Periodic boundary value problems for first order functional differential equations with impulse

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic boundary value problems for second-order functional differential equations with impulse

where J = [,T], f : J×Cτ → R is a continuous function, φ ∈ Cτ (Cτ be given in Section ), τ ≥ , ρ(t) ∈ C(J , (,∞)), ut ∈ Cτ , ut(θ ) = u(t + θ ), θ ∈ [–τ , ]. Ik ∈ C(Cτ ,R),  = t < t < t < · · · < tm < tm+ = T , J ′ = (,T)\{t, . . . , tm}. u′(tk) = u′(t+ k )–u′(t– k ), u′(t+ k ) (u′(t– k )) denote the right limit (left limit) of u′(t) at t = tk , and A ∈ R = (–∞, +∞). Impulsive diffe...

متن کامل

Periodic Boundary Value Problems for Second-Order Functional Differential Equations

Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...

متن کامل

Periodic Boundary Value Problems for First Order Difference Equations

In this paper, existence criteria for single and multiple positive solutions of periodic boundary value problems for first order difference equations of the form

متن کامل

Boundary Value Problems for First-order Differential Equations

Conditions sufficient to guarantee existence and uniqueness of solutions to multipoint boundary value problems for the first-order differential equation y' = h(t,y) are given when h fails to be Lipschitz along a solution of y' = h(t,y) and the initial-value problem thus has nonunique solutions. It is well known that the initial value problem for the first-order differential equation y' — h(t,y)...

متن کامل

Impulsive Boundary-value Problems for First-order Integro-differential Equations

This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2007.12.015